Polvos metálicos para impresión 3D

Índice

Visión general

3D printing, also known as additive manufacturing (AM), utilizes metal powders to construct complex components layer by layer directly from digital models. The powders are selectively melted or bound by precision heat sources guided by the CAD model geometries.

Popular AM processes for metals include binder jetting, directed energy deposition, powder bed fusion, sheet lamination, and more. Each requires powder feedstock with specific characteristics to achieve optimal density, surface finish, dimensional accuracy, and mechanical properties.

This guide provides an in-depth look at metal powders for 3D printing, including alloy types, powder production methods, key powder properties, applications, specifications, suppliers, and purchasing considerations when sourcing material. Helpful comparison tables summarize technical data to assist with powder selection and qualification.

Connecting with knowledgeable suppliers of optimized 3D printing powders enables manufacturers to improve print quality, reduce defects, and fully leverage AM benefits like design freedom, faster iteration, and part consolidation.

polvos metálicos para impresión 3D

Alloys for 3D Printing Powders

A wide range of metals and alloys are available in powder form suitable for AM processes:

Sistemas de aleación comunes para Polvos metálicos para impresión 3D

  • Aceros inoxidables
  • Aceros para herramientas
  • Titanio y aleaciones de titanio
  • Aleaciones de aluminio
  • Superaleaciones de níquel
  • Aleaciones de cobalto-cromo
  • Aleaciones de cobre
  • Metales preciosos

Both standard and custom alloys can be sourced to meet specific application requirements in terms of corrosion resistance, strength, hardness, conductivity, or other properties.

Métodos de producción de polvo metálico para AM

Additive manufacturing utilizes metal powders produced through:

Typical Metal Powder Manufacturing Methods for 3D Printing

  • Atomización de gas
  • Atomización del agua
  • Atomización por plasma
  • Electrólisis
  • Proceso del hierro carbonilado
  • Aleación mecánica
  • Hidruración/deshidruración de metales
  • Esferoidización del plasma
  • Granulación

Spherical atomized powders provide optimal flow and dense packing needed for most AM processes. Some techniques allow nanoscale or customized alloy particles.

Key Characteristics of Metal Printing Powders

Las características críticas del polvo para la AM incluyen:

Metal 3D Printing Powder Properties

Característica Valores típicos Importancia
Distribución granulométrica 10 a 45 micras Afecta a la densificación y al acabado superficial
Forma de las partículas Esférica Improves flow and packing
Densidad aparente 2 a 4 g/cc Influences bed density
Densidad del grifo 3 a 6 g/cc Indica la compresibilidad
Caudal Hall 25-50 s/50g Garantiza una distribución uniforme del polvo
Pérdida en el encendido 0.1-0.5% Low moisture improves printing
Contenido de oxígeno <0,1% Minimizes microstructural defects

Precisely controlling characteristics like particle size, shape, and chemistry is critical to achieve fully dense AM parts with the desired mechanical properties.

Aplicaciones de Polvos metálicos para impresión 3D

AM enables complex geometries impossible through conventional techniques:

Metal 3D Printing Applications

Industria Utiliza Beneficios
Aeroespacial Palas de turbina, estructuras Libertad de diseño, reducción de peso
Médico Implantes, prótesis, instrumental Formas personalizadas
Automoción Aligeramiento de prototipos y herramientas Iteración rápida
Defensa Piezas de drones, estructuras de protección Prototipos rápidos y tiradas cortas
Energía Intercambiadores de calor, colectores Consolidación de piezas y optimización de la topología
Electrónica Blindaje, dispositivos de refrigeración, EMI Estructuras cerradas complejas

El aligeramiento, la consolidación de piezas y las aleaciones de alto rendimiento para entornos extremos ofrecen ventajas clave sobre los métodos de fabricación tradicionales.

Specifications for 3D Printing Metal Powders

Las especificaciones internacionales ayudan a normalizar las características del polvo AM:

Normas sobre polvo metálico para la fabricación aditiva

Estándar Alcance Parámetros Métodos de ensayo
ASTM F3049 Guía para la caracterización de metales AM Muestreo, análisis del tamaño, química, defectos Microscopía, difracción, SEM-EDS
ASTM F3001-14 Aleaciones de titanio para AM Tamaño de las partículas, química, flujo Sieving, SEM-EDS
ASTM F3301 Nickel alloys for AM Particle shape and size analysis Microscopy, image analysis
ASTM F3056 Stainless steel for AM Chemistry, powder properties ICP-OES, pycnometry
ISO/ASTM 52921 Standard terminology for AM powders Definitions and powder characteristics Varios

Compliance with published specifications ensures repeatable, high quality powder feedstock for critical applications.

Proveedores globales de Polvos metálicos para impresión 3D

Leading international suppliers of AM-optimized metal powders include:

Metal Powder Manufacturers for 3D Printing

Proveedor Materiales Typical Particle Size
Sandvik Stainless, tool steel, nickel alloys 15-45 micras
Praxair Titanio, superaleaciones 10-45 micras
AP&C Aleaciones de titanio, níquel y cobalto 5-25 micras
Aditivo para carpinteros Cobalt chrome, stainless, copper 15-45 micras
Tecnología LPW Aluminum alloys, titanium 10-100 micras
EOS Tool steel, cobalt chrome, stainless 20-50 microns

Many focus on fine spherical powders specifically engineered for common AM methods like binder jetting, powder bed fusion, and directed energy deposition.

Purchasing Considerations for 3D Printing Metal Powder

Key aspects to discuss with metal powder suppliers:

  • Desired alloy composition and properties
  • Target particle size distribution and shape
  • Envelope density and hall flowability
  • Allowable impurity levels like oxygen and moisture
  • Required testing data and powder characterization
  • Available quantity range and lead times
  • Special handling precautions for pyrophoric materials
  • Quality systems and powder origin traceability
  • Technical expertise in AM-specific powder requirements
  • Logistics and delivery mechanisms

Work closely with suppliers experienced in optimized AM powders to ensure ideal powder selection for your process and components.

Ventajas e inconvenientes de los polvos metálicos para impresión 3D

Benefits vs Limitations of Metal Powders for AM

Ventajas Desventajas
Allows complex, customized geometries Higher cost than conventional materials
Shortens development time dramatically Powder handling precautions required
Simplifies assemblies and lightweights Post-processing often needed on as-printed parts
Achieves properties nearing wrought materials Size and build volume constraints
Eliminates expensive dies, molds, tooling Thermal stresses can cause cracking and distortion
Enables parts consolidation and topology optimization Lower production volumes than traditional methods
Improves buy-to-fly ratio greatly Requires rigorous powder characterization and parameter development

When used appropriately, metal AM provides game-changing benefits but requires expertise to implement successfully.

polvos metálicos para impresión 3D

PREGUNTAS FRECUENTES

How small can metal powder particle size be for AM?

Specialized atomization techniques can produce powder down to 1-10 microns, however most metals printers work best with minimum size around 15-20 microns for good flow and packing.

What causes poor surface finish in printed metal parts?

Surface roughness arises from partially melted powder adhered to surfaces, spatter, staircase stepping, and suboptimal melt pool characteristics. Using finer powders and dialing in ideal processing parameters smoothens finish.

Do all metal 3D printing methods work with the same powders?

While there is overlap, binder jetting generally uses a broader powder size distribution than powder bed fusion. Some processes are limited to certain alloys based on melting points or reactivity.

How are mixed or bimetallic powders made?

Prealloyed powders ensure uniform properties but for composites, physical powder blending or specialized atomization techniques provide blended elemental powder mixes.

How long does it take to change powder material in a metal printer?

A full purge and changeover between significantly different alloys requires 6-12 hours typically. Quick changes between similar materials can be under an hour.

Conclusión

Optimized metal powders enable additive manufacturing processes to construct complex, robust metal components with superior properties. Matching alloy chemistry and powder characteristics to the printing method and component performance requirements is critical to high quality results. By partnering with experienced powder suppliers, end users leverage expertise in both powder production and 3D printing processes to develop robust AM components faster and more reliably.

conocer más procesos de impresión 3D

Compartir

Facebook
Twitter
LinkedIn
WhatsApp
Correo electrónico
metal 3dp logo small

MET3DP Technology Co., LTD es un proveedor líder de soluciones de fabricación aditiva con sede en Qingdao, China. Nuestra empresa está especializada en equipos de impresión 3D y polvos metálicos de alto rendimiento para aplicaciones industriales.

Solicite información para obtener el mejor precio y una solución personalizada para su empresa.

Artículos relacionados

Acerca de Met3DP

Reproducir vídeo

Actualización reciente

Nuestro producto

CONTACTO

¿Tiene alguna pregunta? ¡Envíenos un mensaje ahora! Atenderemos su solicitud con todo un equipo tras recibir su mensaje. 

Obtener Metal3DP
Folleto del producto

Obtenga los últimos productos y la lista de precios